skip to main content


Search for: All records

Creators/Authors contains: "Tibshirani, Ryan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract We consider the problem of distribution-free predictive inference, with the goal of producing predictive coverage guarantees that hold conditionally rather than marginally. Existing methods such as conformal prediction offer marginal coverage guarantees, where predictive coverage holds on average over all possible test points, but this is not sufficient for many practical applications where we would like to know that our predictions are valid for a given individual, not merely on average over a population. On the other hand, exact conditional inference guarantees are known to be impossible without imposing assumptions on the underlying distribution. In this work, we aim to explore the space in between these two and examine what types of relaxations of the conditional coverage property would alleviate some of the practical concerns with marginal coverage guarantees while still being possible to achieve in a distribution-free setting. 
    more » « less
  3. Abstract

    Changepoint detection methods are used in many areas of science and engineering, for example, in the analysis of copy number variation data to detect abnormalities in copy numbers along the genome. Despite the broad array of available tools, methodology for quantifying our uncertainty in the strength (or the presence) of given changepointspost‐selectionare lacking. Post‐selection inference offers a framework to fill this gap, but the most straightforward application of these methods results in low‐powered hypothesis tests and leaves open several important questions about practical usability. In this work, we carefully tailor post‐selection inference methods toward changepoint detection, focusing on copy number variation data. To accomplish this, we study commonly used changepoint algorithms: binary segmentation, as well as two of its most popular variants, wild and circular, and the fused lasso. We implement some of the latest developments in post‐selection inference theory, mainly auxiliary randomization. This improves the power, which requires implementations of Markov chain Monte Carlo algorithms (importance sampling and hit‐and‐run sampling) to carry out our tests. We also provide recommendations for improving practical useability, detailed simulations, and example analyses on array comparative genomic hybridization as well as sequencing data.

     
    more » « less
  4. In the 1-dimensional multiple changepoint detection problem, we derive a new fast error rate for the fused lasso estimator, under the assumption that the mean vector has a sparse number of changepoints. This rate is seen to be suboptimal (compared to the minimax rate) by only a factor of loglogn. Our proof technique is centered around a novel construction that we call a lower interpolant. We extend our results to misspecified models and exponential family distributions. We also describe the implications of our error analysis for the approximate screening of changepoints. 
    more » « less
  5. We consider the problem of estimating the values of a function over n nodes of a d-dimensional grid graph (having equal side lengths) from noisy observations. The function is assumed to be smooth, but is allowed to exhibit different amounts of smoothness at different regions in the grid. Such heterogeneity eludes classical measures of smoothness from nonparametric statistics, such as Holder smoothness. Meanwhile, total variation (TV) smoothness classes allow for heterogeneity, but are restrictive in another sense: only constant functions count as perfectly smooth (achieve zero TV). To move past this, we define two new higher-order TV classes, based on two ways of compiling the discrete derivatives of a parameter across the nodes. We relate these two new classes to Holder classes, and derive lower bounds on their minimax errors. We also analyze two naturally associated trend filtering methods; when d=2, each is seen to be rate optimal over the appropriate class. 
    more » « less
  6. Summary

    We consider rules for discarding predictors in lasso regression and related problems, for computational efficiency. El Ghaoui and his colleagues have proposed ‘SAFE’ rules, based on univariate inner products between each predictor and the outcome, which guarantee that a coefficient will be 0 in the solution vector. This provides a reduction in the number of variables that need to be entered into the optimization. We propose strong rules that are very simple and yet screen out far more predictors than the SAFE rules. This great practical improvement comes at a price: the strong rules are not foolproof and can mistakenly discard active predictors, i.e. predictors that have non-zero coefficients in the solution. We therefore combine them with simple checks of the Karush–Kuhn–Tucker conditions to ensure that the exact solution to the convex problem is delivered. Of course, any (approximate) screening method can be combined with the Karush–Kuhn–Tucker conditions to ensure the exact solution; the strength of the strong rules lies in the fact that, in practice, they discard a very large number of the inactive predictors and almost never commit mistakes. We also derive conditions under which they are foolproof. Strong rules provide substantial savings in computational time for a variety of statistical optimization problems.

     
    more » « less
  7. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less